Comparison of the Thermal Degradation Properties of Crystalline and Amorphous Cellulose, as well as Treated Lignocellulosic Biomass

نویسنده

  • Akihiro Hideno
چکیده

Thermo-gravimetric analyses of three cellulosic substances, namely, microcrystalline and amorphous cellulose, and treated Japanese cypress (JC) sawdust were carried out in this study. The thermal degradation temperature of crystalline cellulose decreased with increasing ball-milling time, while that of amorphous cellulose barely changed. However, small differences in the derivative thermo-gravimetric (DTG) curves between crystalline cellulose (i.e., before ball milling) and amorphous cellulose (i.e., after ball milling) were observed. The DTG curves of high-crystalline cellulose were sharp and similar to those of low-crystalline samples. The thermal degradation temperature of JC was decreased by ball milling, and its DTG peak shape became broad and low. These effects could be caused by the denaturing of non-cellulosic substances such as hemicellulose and lignin. The thermal degradation behaviors revealed by the DTG curves may serve as indicators of crystalline cellulose purity and other physical properties of lignocellulosic biomass.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differences in Cellulosic Supramolecular Structure of Compositionally Similar Rice Straw Affect Biomass Metabolism by Paddy Soil Microbiota

Because they are strong and stable, lignocellulosic supramolecular structures in plant cell walls are resistant to decomposition. However, they can be degraded and recycled by soil microbiota. Little is known about the biomass degradation profiles of complex microbiota based on differences in cellulosic supramolecular structures without compositional variations. Here, we characterized and evalu...

متن کامل

Evaluation of four ionic liquids for pretreatment of lignocellulosic biomass

BACKGROUND Lignocellulosic biomass is highly recalcitrant and various pretreatment techniques are needed to facilitate its effective enzymatic hydrolysis to produce sugars for further conversion to bio-based chemicals. Ionic liquids (ILs) are of interest in pretreatment because of their potential to dissolve lignocellulosic materials including crystalline cellulose. RESULTS Four imidazolium-b...

متن کامل

Impact of Pretreated Switchgrass and Biomass Carbohydrates on Clostridium thermocellum ATCC 27405 Cellulosome Composition: A Quantitative Proteomic Analysis

BACKGROUND Economic feasibility and sustainability of lignocellulosic ethanol production requires the development of robust microorganisms that can efficiently degrade and convert plant biomass to ethanol. The anaerobic thermophilic bacterium Clostridium thermocellum is a candidate microorganism as it is capable of hydrolyzing cellulose and fermenting the hydrolysis products to ethanol and othe...

متن کامل

Physico-chemical oxidative cleavage strategy facilitates the degradation of recalcitrant crystalline cellulose by cellulases hydrolysis

Background Efficient enzymatic conversion of recalcitrant crystalline cellulose is critical for enabling cost-effective industrial conversion of cellulosic biomass to biofuels and chemicals. Fully understanding enzyme digestion mechanism is paving a new way to design efficient process for biomass conversion. Accordingly, a continuing drive is inspiring to discover new routes to promote crystall...

متن کامل

Degradation analysis of lignocellulosic fillers infused coir epoxy composites in different environmental conditions

India has large resources of natural fibres such as Banana, Khus, Sisal, Korai grass,Talipot, Palm leaf, Coconut, Pineapple, Screwpine, Golden grass, Jute and Sabaiamong others. In the past, trade of the village folk depended on harvesting fibresgrown in their villages. Natural fibers have recently gaining attraction of researchersdue to their low cost eco-friendly and biodegradability characte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016